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1. INTRODUCTION

Consider a clinical trial to compare the efficacies of treatments A and B,
It is typical in these trials that patient arrival and treatment assignment is
sequential. To obtain a balanced or nearly balanced treatment allocation,
without increasing unacceptably experimentél biases, Efron (1971) proposed a
biased coin treatment allocation. Let Tl’ Tz, ... denote the assignment variables
with T, =0or1l depending on whether the ith patient receives treatment A or B,

respectively. With D0 = 0, define for i =1, 2, ...
D- = 2 T- - ia (1‘1)

Under Efron's (1971) biased coin design with bias p(%<p<1), hereon abbreviated
BCD(p), the probability that the (i + 1)tP patient receives B is p, %, q = 1-p
according to whether Di <, =, > 0, respectively. Wei (1977, 1978) generalized
this design by allowing the (i + 1)®h patient's assignment prcbabilities to depend
on i and D;.

We confine our attention to a clinical trial where the treatments are assigned
to n patients via the BCD(p). In Section 2 distributional properties of Tl’ coay Tn'
conditional on D , are presented. Procedures for computing approximations to the
conditional moments of Tl’ ey Tn are given in Section 3. In Section 4 we discuss
the relevance of the results in Sections 2 and 3 in relation to the randomization

test of HO, the null hypothesis of no treatment difference. We consider test

statistics of the form

n
Sy = L 3T, (1.2)
i=1
where 315 eeey 2 is a nonrandom sequence of scores associated with the sequence
of patient responses Xys eoes Xpo The two-sided version of the randomization test

thus rejects H, if the observed Sn is either "too small" or ''too large".
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In deciding whether a test statistic is too small or too large, Cox (1982)
recommended that the reference randomization distribution should be taken over
those treatment allocations with the same or nearly the same terminal imbalance
as the observed allocation. In accordance with Cox's suggestion, the results of
Sections 2 and 3 are conditional on D,. Note however that some authors use the
unconditional randomization distribution of Sn(see Smythe and Wei {(1983) and
Smith (1984)).

In his doctoral dissertation, E. Pefia derived a recursion procedure for
obtaining the exact randomization distribution of S, s conditional on D, = m. This
procedure enables one to perform exact significance tests of Ho, but for large
sample sizes the computer time required to implement the recursion may not be
acceptable. In Section 4 we therefore suggest an alternative test procedure based
on approximating the distribution of S by the normal distribution. In Section 5
a computer simulation is used to assess the adequacy of the normal approximation
for n = 51 and n = 101,

Efron (1971) presented approximations to the conditional parameters of S , and
suggested approximating the conditional randomization distribution of Sh by the
normal distribution. However, in a simulation study, Halpern and Brown (1986)
indicated that Efron's approximations are inadequate in the presence of treatment
allocation imbalance. The results in Section 2 offer a theoretical explanation
for this inadequacy, and in conjunction with the results of Section 3 provide

improved approximations to the conditional moments of S whenever D = 0.

2. DISTRIBUTIONAL PROPERTIES OF Tl, ceey Ty

Let Z be the set of integers, Z the set of positive integers, and set

I

Z? =7, u{0}. By the defining property of the BCD(p), the process Dy» Dl’ cos

i

e
0

in (1.1) is a homogeneous Markov chain with state space Z having stationary

z A

o< 3 -~ ; e .
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transition probabilities

pi,j = pr(Dl=j|Do=i), jel,iel

4

% if j=tl,i=0

P if (j=i+l,i<0) or (j=i-1,i>0)

= 9 (2‘1)
q if (j=i-1,i<0) or (j=i+1,i>0)
L 0 otherwise.
The nth order transition probabilities of this chain will be denoted by
P} ;» i€Z, jez}, and the stationary distribution probabilities by {r;, jeZ}.
?

These stationary probabilities are

"o = (-0)/(2p) and w =7y = -)/GpA R, jez,. (2.2)

In order to maintain continuity in the presentation of the results, all proofs

are deferred to Section 6.

1

Theorem 2.1: If m ¢ Z with Py p > 0, then conditional on D = m,
»

(i) T,. and T

2i-1 are exchangeable, and

2i
(ii) T, and T,
i=1, ..., [®/2], where [k] denotes the greatest

y are exchangeable whenever m = 0, for

integer < k.,

ddd
£,=,2

Let V and W be random variables. Recall that V( JW if for every real

number v, pr(Vsv)(2,=,s) pr(Wsv), respectively.

Corollary 2.1: If m € Z with Pg > 0, then conditional on D, = m, (Tl’ cons
2

T T.)

Tyi-2 Tai-12 Tair Togers ooeo Tpd = (Tps eees Toi 05 Togs Toi9 To410 +cv5 Tp

for every i = 1, ..., [n/2].
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On the otherhand, it is not true that, conditional on D, =0,

d
(Tys oo o310 Toso Toians Togezs woes ) = (T eeey Ty 00 Toiprs Togo

TZi+2’ cees Tn) fori=1, ..., [/2] as the following example illustrates.

Example 2.1: Under the BCD(p), pr(T,=1, T,=0, T,=1, T4=0|D0=0, D,=0) =
pr(T =1, Ty=1, T,=0, T4=0|D0=0, D,=0).
However, aside from Theorem 2.1 (ii), we have the following results for the

pairs (TZi’ T2i+1)’ i=1, ..., [n/2].

Theorem 2.2: Ifm e Z with P* _ > 0 then, conditional on D =m, TZi(g'g’g)Tz

0,m i+l

according to whether m(>,=,<) 0, respectively, for i =1, ..., [®/2].

Corollary 2.1 implies that the randomization distribution of Spo conditional
on D =m, is invariant with respect to permutations of members in the doubletons
{aZi-l’aZi} for i =1, ..., [®/2]. Thus there are at most I C(n-2i,2) permutations

of a,, ..., a, that give distinct conditional randomization distributions for Sn,

1
where 1 represents the product from i = 0 to i = [®/2] and C(b,a) denotes the
number of combinations of a objects taken from b distinct objects. Unfortunately,
this bound increases rapidly with n, making it impractical to construct tables of
critical values for the conditional randomization distribution of S .

That the conditional randomization distribution of Sp depends on the particular

order of By, ooy By under the BCD(p) is in contrast with the case where treat-

ments are assigned via complete randomization, or equivalently via BCD(%). In the
latter situation, T,, ..., T, are exchangeable, conditional on D, = m, and hence the
conditional randomization distribution of S is invariant with respect to permutations

of A1y +eey B4

n _ _ R . n
Let Mim T E(TilDO-O,Dn-m) fori =1, ..., n and oi.’

jom = cov(Ti,TjIDo=0,Dn=m)

Sz B 2 4

for i,j =1, ..., n. An immediate consequence of Theorems 2.1 and 2.2 is:
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Corollary 2.2: If m e Z with pg n
’

> 0, then for i = 1, cesy [n/zl’
. n _.n
(1) wyi_3,m = M2i,p» and

(ii) ugi,m (s,=,2) “gi+1 n if m(>,=,90, respectively.
b4

Furthermore, since

n - Pn-l/ (Pn-l . Pn"l )’ (2.3)

Min T F,m’ Yim t Folm

then u? n (>,=,<)% according to whether m(>,=,<)0. By Corollary 2.2 and using
b

. n _n n . .
the relation Gii,m = ui,m(l-ui’m) it follows that:

n

Corollary 2.3: If m e Z with Po’m >0, then for i =1, ..., n,

(1) o (>,=,<)% if m(>,=,<)0, respectively, and

i,m
(ii) cgi m(=,<)’4 if wm(=,2)0, respectively.
td

With the object of evaluating the conditional mean of Sn’ it is of interest
to know if the u? m's can be well-approximated by %{1+(m/n)}, the latter being the
y
conditional mean of each Ti under complete randomization. To resolve this question,

we resort to limiting values. Since DO’ Dl’ .+. is a Markov chain of period 2,

2n 2n-1
0,2m and PO,Zm-l converge to Zan and 2Myn1?

and (2.3) it follows that u? n converges to % as n tends to infinity. By a
, :

then P respectively. Using (2.2)

similar argument, u: n can be shown to converge to p, % or q depending on whether
’

m >, =, or < 0, respectively. Therefore, if m # 0, the absolute difference between

n . ey s .
y"  and i tends to p-% as n increases. Consequently, it is our view that
]

n,m
approximating the u? m's by %{1+ (m/m)} is not advisable. The inadequacy of
b4
these approximations is further illustrated by results of the simulation in Section

So

5
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. 3. CONDITIONAL MEANS AND COVARIANCES

In this section we present recursive procedures for computing the conditional
] means and covariances of Tl, coss Tn. For ease of implementation, but at the cost
vie's’; S of obtaining only approximate results, we follow Efron (1971) and assume that
! the process Do, Dl’ .+. is at its stationary state. The results below thus pertain

il to the process Dy, D;, ... satisfying

a pr(D0=j) = jel, (3.1)

J”

‘35. where {nj,jez} are given in (2.2).

Theorem 3.1: If (3.1) is satisfied, then for m ¢ Z

} . n _ n-i+l . _ .
lit‘ (1) ui,m = ul,m si=1, ..., n; nelZ, and

VY (ii) on - n"i+1

ii+j,m- 11+j,m’ j=1’ n"!n-i; i=1, -co,n-l; neZ.

+

oy Theorem 3.1 implies that to compute u? n fori=1, ..., n, one must simply
»

'\
! { obtain u? n for k=1, ..., n; and, similarly, for the covariances. The following
3

k

011+j,m for k=1, ..., n.

theorems provide methods for obtaining “t n and
’

Wit Theorem 3,2: If (3.1) is satisfied, then

gk k -1 .k
l;a ' “1,m = "m Lo

where {Lz} satisfy the recursion equation

Wk k- k-1

. 1 -
W m = Yme1 Upe1 ¥ (oYpedlpyy» k= 2,3, ...
)

1
4#% with initial and boundary conditions L; = me Z, and where y_ =D, %, q

1Tm-l Ym-1°

according to whether m(<,=,>)0, respectively.

Ty
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Theorem 3.3: If (3.1) is satisfied, then

oy - =1k .
E(T1T1+j|Dk—m) =T Lm, j=1, oo, n -1

where {L]';} satisfy the recursion equation

k-1

m+l’ k

) L

k k . .
o 2+ 3,3+ 3, «us

L=y L:i*(l-Y

m m-1 m+1

: . ias ‘s 1+ _ j
with initial and boundary conditions Lm m-l"m-l“l,m-l’ me Z,

The conditional covariances are then obtained through the relation

k

k-j
o11-0'j N ]

= E(T ul,m ul,m

1 1+J|D =m) -

and Theorem 3.1.
To illustrate the adequacy of these approximations for a moderate sample size,
the exact and approximate conditional means of T, ..., T forn =51, p = %4 and
m=1, 3 and 5 were computed. Exact values were obtained using procedures in
Pefia's dissertation. The results are summarized in Table 1. Notice that for
practical purposes it suffices to use the approximate means (and variances) for
this value of n and p. The simulation results in the next section indicate however
that when the approximate covariances are used to compute the standard deviation
of Sn’ this could lead to overestimation of the exact standard deviation of Sn
for some score sequences Ay, eeey 35,

n

4, LARGE-SAMPLE TEST PROCEDURES

With a; = x; - X in (1.2) Efron (1971) standardized S, as
n
m
z ai{Ti-12(1+ E) }

. =1
Z, = , (4.1)

{%Za +1 7 a;a

125 i%5%;

\ﬂ
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Table 3.1. Summary of exact and approximate conditional

% ' means “z,m forn =51, p = %-and m=1, 3and S
| ' m=1 m=3 m=5
k) 1
2 Exact Approximate | Exact Approximate | Exact Approximate
, 1 | .5002 .5002 .5008 .5009 .5024 .5027
‘ 3 | .5002 .5002 .5011 .5011 .5031 .5032
p 5 | .5002 .5002 .5013 .5013 .5037 .5038
2 7 ] .5003 .5003 .5016 .5016 .5045 .5044
? 9 | .5003 .5003 .5019 .5018 .5053 .5052
k 11 .5004 .5004 .5022 .5022 .5063 .5062
3 13 | .5005 .5005 .5027 .5026 .5075 .5073
15 | .5006 .5006 .5032 .5031 .5089 .5086
: 17 | .5007 .5007° .5038 .5037 .5106 .5103
‘ 19 | .S008 .5008 .5046 .5044 .5126 .5122
K 21 | .5010 .5010 .5055 .5053 .5150 .5146
; 23 | .5012 .5012 .5066 .5065 .5179 .5174
; 25 | .5015 .5015 .5080 .5078 .5214 .5209
' 27 | .5018 .5018 .5098 .5096 .5257 .5251
. 29 | .5023 .5022 .5120 .5117 .5309 .5302
9 31 | .5028 .5028 .5147 .5145 .5373 .5366
3 33 | .5035  .5035 .5182  .5180 5451  .5444
' 35 | .5045 .5044 .5228 .5225 .5548 .5540
' 37 | .5058 .5057 .5288 .5285 .5668 .5659
) 39 | .5075 .5075 .5367 .5364 .5817 .5806
2 41 | .5101 .5100 .5476 .5472 .5999 .5987
! 43 | .5139 .5138 .5628 .5624 .6217 .6203
é 45 | .5200 .5199 .5848 .5844 .6462 .6447
3 47 | .5309 .5309 .6178 .6173 .6683 . 6667
3 49 | .5556 .5556 .6672 .6667 .6683 .6667
‘ 51 | .6668 .6667 .6672 .6667 .6683 .6667
N
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where 05 = cov(Ti,Tj) denotes the unconditional covariance between Ti and Tj'
He suggested approximating the conditional randomization distribution of Z1 by
the standard normal distribution. Efron assumed that there was complete balance
in the treatment allocation, that is, D, = 0. In that case Z1 has conditional

mean 0 but its conditional variance may not be 1.0 since in the denominator of

Furthermore, if Dn =m = 0, Corollary 2.3

. n
(4.1) °ij was used instead of oij,m'

shows that Z1 has a nonzero conditional mean and a conditional variance that will
tend to be smaller than 1.0, Thus, assuming that the distribution of Z1 is
normal, the standard normal approximation may go awry. This offers a theoretical
explanation for the simulation-based conclusion of Halpern and Brown (1986) that
the standard normal approximation to Z1 is inadequate in the presence of treatment
imbalance,

With the ability to compute the conditional means and covariances of the T's

using results of Section 3, we propose the use of the test statistic

n
n
._z_lai(Ti'ui,m)
Z, = 1= , (4.2)
2 LI n %
{) asdt, +) Yaa.co,. V}*
jop 1it,mT f e j ij,m

where the a1, «.., 3, are standardized to satisfy Z a; = 0. 1If the standard
i=1

normal distribution is then used to approximate the distribution of Z,, the

a-level two-sided randomization test rejects Hj if |z,| > 2427 where z . is

the (1-a/2)100% percentile of the standard normal distribution.

Efron (1971) showed that when the sequence 815 sees B is noisy, the covariance

term in (4.1) given by

K=7J 2313' .. (4.3)

{5 17374

is near 0, We expect the covariance term in (4,2) given by
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=§ § i % 13’ (4.4)

to have roughly the same behaviour as K. If the score sequence is noisy we thus

prefer to use the computationally simpler test statistic

i,m

2 n
Z (Ti-U' )

i

rather than 22.

We are not able to provide a theoretical justification for the standard
normal approximation to the conditional randomization distribution of Zl’ Zz,
and Zz. This problem of proving that the conditional randomization distributions
converge in distribution to the normal distribution is a difficult theoretical
problem, moreso under the BCD(p). Under Wei's (1978) adaptive biased coin design,
Wei, Smythe and Smith (1986) approached this problem by proving the joint asymptotic
normality of (Sn,Dn), and then conjecturing that Sn’ conditional on Dn’ is
asymptotically normal. However, Smythe and Wei (1983) pointed out that the uncon-
ditional distribution of S = .E a;T; under the BCD(p) may not be asymptotically
normal. The approach of Wei, Smythe, and Smith may not therefore work for our
problem since (Sn,Dn) may not be jointly asymptotically normal,

A computer simulation was performed to examine the adequacy of the normal

approximation to the conditional randomization distributions of Zs Z,, and Zs.

Details of this study are discussed in the next section,

5. A SIMULATION STUDY

The simulation was performed at the Florida State University Computing Center

on a Control Data Cyber 730 computer. The uniform random number generator used

was the intrinsic routine RANF,




Two sample sizes, n = 51 and n = 101, were considered in the simulation, and
the scores in (1.2) were set to a, = rank (x,) - (n+1)/2. The covariance quantity
K in (4.3) was set to 0, For each sample size, five score sequences were considered,
and as a measure of the noise of each sequence their respective correlation coeffi-
cients with 1, 2, ..., n were computed. A low absolute correlation coefficient
indicates a high degree of noise. These correlation coefficients are summarized
in Table 2,

Table 2. Correlation coefficients for the 10 rank sequences
in the simulation study.

Sample Sequence Number

Size, n 1 2 3 4 -]
51 0.0724 0.1919 0.3719 0.7252 1.00
101 -0,1988 0.0071 0.3244 0.6827 1.00

For each score sequence, 10000 replicates of assignment variates Tis eeer b
were generated via the BCD(p) with p = 3’3. For each of these replicates, the
values of Zl, Zz, and 23 were computed, with the conditional means and covariances
of '1'1, ooy Tn approximated by the procedures in Section 3. After stratifying the
10000 replicates according to their value of Dn = m, the mean, standard deviation,
percentages of values greater than 1.645, 1.96, and 2.33 of Zl, Zz, and Z5 were
determined. The results are summarized in Table 3 for n = 51, and in Table 4 for
n = 101, Those values that are superscripted by one or two asterisks are signi-
ficantly different, based on the classical Z-test, from what is expected under
the standard normal distribution at level 0.05 or 0.01, respectively,

Tables 3 and 4 indicate that the adequacy of the standard normal approximation

depends on the degree of noise of the score sequence. The more noise there is in

the sequence, the better the approximation. Notice that for sequences 1 and 2

11
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which are the noisiest sequences, the percentages of values of Zl, Z, and Z3
greater than 1.645, 1,96, and 2,33, for most values of m, are statistically
consistent with the 5.0, 2.5, and 1.0 percent that could be expected under the
standard normal.

For almost all cases, the means of Z2 and 23 are statistically consistent with

0; in contrast, the means of Z. are, for most cases, statistically different from O.

1

This supports our earlier observations that the approximations to the u? m's
»

in Section 3 are good, and that ’%{1+(m/n)} should not be substituted for the

n
i,m

u. _'s. Note also that the departure from 0 of the mean of Z, increases as the
treatment allocation imbalance increases. Aside from that, as n increases, the
mean of 21 tends to increase or decrease according to whether the correlation is
positive or negative, respectively.
The behaviours of Z2 and Z3 for sequences 1 and 2 are almost identical,
implying that the covariance term K” in (4.4) is near 0. Their standard deviations
become more different however, as we go along sequences 3, 4 and 5 for both values
of n. This implies that when the score sequence is noisy, the covariance term
K“ should not be ignored, and Z2 should be the preferred test statistic. On the
otherhand, the standard deviations of Z1 and Z5 are almost identical for all cases.
We expect 22'5 standard deviation to be 1.0; however, the observed standard
deviations of 22 for sequences 4 and 5 are significantly lower than 1.0. The
increase in sample size from n = 51 to n = 101 did not improve the approximation.
This indicates that the approximations to the covariances given in Section 3 lead
to an overestimate of K“ in (4.4). Consequently, if Z, is computed using the approxi-
mations in Section 3, and the standard normal is used to approximate the distribution

of Z,, the randomization test which rejects H, if 1z,| > Zo/2 Will tend to be a

conservative test for non-noisy score sequences.

12
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6. PROOFS
Before proving the theorems of Sections 2 and 3 we state the following results
which were proved in Pena's dissertation.
Lemma 6.1: The process Dy>» Dl’ ... is symmetric in the sense that
{ B (D,=d,)|D=d }=pr{ 0 (D;=-d)|D =-d}
pri 0 (03=4;)IDg=dg } = pri 0 (D3=-diDg=-dy
for every dj, ..., d with di € 2,

Corollary 6.1: P}, =P) ., ieZ, jeZ ne A

Lemma 6.2: If x,y ¢ {0,1} and j, k ¢ Z, then

(i) a(x,y,j,k) = 0 whenever j and k are even,

(ii) a(x,y,j,k) = O whenever j and k are odd and of opposite signs, and

(111) a(x,y,j,k) a(l-x,l-y,-j,-k),

where a(x,y,j,k) = pr(T1=x,T2=y[Do=j,Dz=k) - pr(T;=y,T,=x|Dy=j,Dy=k).

Proof of Theorem 2.1: Let x and y take arbitrary values in {0,1}. To prove (i),

note that pr(T,; ,=x,T,;=y|Dy=0,D =m) = Eo’m pr(T21_1=x,TZi=y|D0=0,D2i_2,02i,Dn=m)

where Eo n denotes expectation conditional on Do =0, Dn = m. By the Markov property
1

of Dy, D;, ... it follows that pr(T21_1=x,T2i=y|DO=0,Dn=m) = Eg p pr(T,; =X,

TZi=YlDZi-2’DZi)' To complete the proof it suffices to show that, for j and k even,
P(Tyy 12X, Tp;=¥IDp; 5=3,Dp3=K) = PT(Tyy =y, Tp;=x|Dy; _p=5,Dp5K).
By the homogeneity of DO’ Dys «-o this reduces to showing that, for j and k even,

pr(T,=x,Ty=y|Dy=j,Dy2k) = pr(T,~y,T,=x|Dy=j,D,=k).
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r.

Using Lemma 6.2(i), part (i) of Theorem 2.1 follows.
To prove (ii), note that pr(Tzi=x,T2i*1=y|Do=0,Dn=m) = Bg p Pr(Ty;=x,

T Dn=m), which by the Markov property of DO, Dl' ... becomes

21417710970, 1505415
pr(TZiax,TZi+1=y|DO=O,Dn=m) =Eym Pr(Ty;=x,Ty; 1571Ds5 _1,D55,1)+ To complete the
proof of (ii) it remains to show that B = Eo,m{pr(TZigx’TZi+1=Y|DZi-l’DZi+1)

- pr(T2i=y,T2i+1=x|D21_1,021+1)} = 0. By expanding the expectation and noting that

and D take odd integer values only, we have

Dyi-1 2i+1

o
[}

§ E PT(Dy;_1=3,D54,17kIDg=0,Dp=m)  {PT(T,;=x,Ty; 1=¥|Dy; 1=3,D55,;%K)

- PT(T,3, T 417Xl Dp; 1 =35D53.,1°K)}

jgo kZO{P’(DZi-1=5’021+1=k|°o=°’°n=m) a(x,y,3,k) + pr(Dy; ;=-3,Dp; 1=k

lDO=0sDn=m) a(x,y,=j,=k)}
*+ 'ZO kzo{pr(DZi-l=j’DZi+l=k 'DO=O,Dn=m) a(x,y,j,k) + Pr(DZi_1=-j,D2i+1='k
j>0 k<

IDO=0’Dn=m) G(X:Y:‘j"k)}

the second equality obtained using the homogeneity of DO’ Dl’ ese o By Lemma
6.2(ii) the second double summation equals 0, and now letting Dn =m= 0 and by

Lemma 6.1 and Corollary 6.1, we have

w
n

.20 kzo pr(DZi_1=j9DZi+1=k|Do=0pDn=0){a(x’y’j’k) + “(x:Y»'j"k)}
J> >

I 3 pr0y 123,00 KI0pr0,0,=0) (kY 3.K) + oll-,1-,3,00)
J> >

where we used Lemma 6.2(iii). But since a(x,y,j,k) + a(l-x,l-y,j,k) = 0 for every

x, y € {0,1} and j and k odd, part (ii) of Theorem 2.1 is proved. I |
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n

Proof of Corollary 2.1. Let (t,,...,t;) with tj € {0,1} and 2 } t;-n=m
j=1

Then, by letting J, = {1,...,2i-2,2i+1,...,n},

n
pr{ n

J_I(Tj’tj)lDo=°’Dn=m)}”Pr{ n_ (Ty=t;)|Dy=0,D =mipriTy; 1=ty; ;,T55=tp;10g=0,

JeJi

T.=t,),D_=m}.
jQJ.( 3=t5) +Pn=0d
1

By the Markov property of DO’DI’ ... and using the result in the proof of Theorem

2.1 which states that pr(TZi_1=x,TZi=y|DZi_2=j,DZi=k) = pr(TZi_1=y,TZi=x|DZi_2=j,DZi=k)

for every j and k even, it follows that

pr(TZi-ftZi-l’TZi:tZilD0=0’j2J (Tj=tj)’Dn=m) = pr(TZi-1=tZi’T2i=tZi-llDO=0’
i

n (T.,=t.),D =m),
X j 3’°™mn
JeJi

hence

n
pr(jfl(Tj=tj)|D0=0’Dn=m) = pr{ngi(Tj=tj)’T21-1=tZi’TZi=tZi-1lDO=0’Dn=m}‘ I

Proof of Theorem 2.2: Define

8 = pr(T,;,,=1{D,=0,D =m) - pr(T,;=1|Dy=0,D =m).

2i+1

Then, by the Markov property of DO’ Dl’ ... we have

8 = Eg p{pr(Tp;,1=11Dy; 1,055.1) - Pr(Ty;=11Dy; 1,054,903 (6.1)

Using the homogeneity of Dys Dys oee and (2.1) we obtain
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Pr(Ty5,121 D5 1=35D55,1=3) - pr(Ty=1]Dy; 1=5,Dy. 1=3)

= pr(T2=1|DO=j,D2=j) - pr(T1=1|Do=j,D2=j)

,

0 if j
Cj(plé-pq) if j
C;(pq-ph) ifj = -1

[o if j = -3, -5, ...

3, 5, see

1

where C, = (p;‘.’ )71, By Corollary 6.1 note that C = C

»J -1°
values of DZi—l in (6.1) are odd integers, and noting that (6.1) equals zero

Since the relevant

whenever DZi-l z DZi +1? it follows that

B = C) (p%- pa) {pr(Dy; _;=1,D5;,,=11D(=0,D,=m)
- pr(Dy; ;=-1,Dp; +1--1|00=o,nn=m)}.

By an application of Lemma 6.1, we obtain

n- 21 n 21}

n
= C)(p%-pa) (P )" bpr,; , =1,D,;,1=1{Dy=0) (P} 1 *-PT 10

It follows that 8(2,=,<)0 according to whether m(>,=,<)0 respectively. Il

Proof of Theorem 3.1: Using (3.1) we have

T ul? = pr(Ti=1,Dn=m) = pr(Tl-_-]_’D n-i+l

mi,m -is1™ = Ty

n 1,m

which proves (i). Similarly,

m E(T, T, .| D =m)

iTisg pr(T =1, T1+J 1,Dn=m) = pr(T1=1,T1+j=1,Dn_i+1=n0

n E(T D m)

1 1+3| n-i+1”




o so that

¥

‘. n _ n n
8 . Oiej,m = E(T3Ti0g 0q™m) = M5 s m

¥

a‘l ¢ . s .

! _ D-i+]l n-i+l = n-i+l

L = E(TTy 5000 541™™ - ¥ 0 M1ej,m = %11+,m I
f.

Since the proofs of Theorems 3.2 and 3.3 are similar, we present only the

‘ latter.

Iy

4

K

Proof of Theorem 3.3: By the assumed stationarity,

“

.I

i:E m E(T, T1+J|D =m) = pr(T1=1,T1+j=1,Dn=m)

L]

o

¥

m lpr(T =1 T1+] ’Dn-1=m-1) + (1- m+1)pr(T 1+3 I’Dn-1=m+1)

&

W =m- - =

. Ym-1"m- IE(TI 1+Jl 1+ Q Ym+1)"m+1F‘(T1 1+3| n-1 ml).
)

)

The recursion equation is then obtained by letting Li =T E(T1 1+ lD =m). The

\

a initial and boundary conditions follow from

A

3

4 1+j _ = = =

A Lm = pr(Tl-l,T1+j 1’D1+j'm)

I; .

. = = = = < J

? = pr(D m-l)pr(T =1|D, -m-l)pr(T1+J , 1+j—m|Dj-m-1) = "m—lul,m-lYm-1° Il
L)

u

P

R

y

i
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